Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.428042

ABSTRACT

RIG-I, a cytoplasmic viral RNA sensor, is crucial for innate antiviral immune responses; however, there are controversies about the regulatory mechanism of RIG-I by several ubiquitin ligases and LGP2. This study revealed that the RIPLET ubiquitin ligase is a general activating factor for RIG-I signaling. In contrast, another ubiquitin ligase, TRIM25, activated RIG-I in a cell-type-specific manner. RIPLET and TRIM25 functions were modulated by accessory factors, such as ZCCH3C and NLRP12. Interestingly, we found an additional role of RIPLET in innate immune responses. RIPLET induced delayed polyubiquitination of LGP, resulting in the attenuation of excessive cytokine expression at the late phase. Moreover, RIPLET was involved in the innate immune responses against SARS-CoV-2 infection, a cause of the recent COVID-19 pandemic. Our data indicate that RIPLET fine-tunes innate immune responses via polyubiquitination of RIG-I and LGP2 against virus infection, including SARS-CoV-2.


Subject(s)
Tumor Virus Infections , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.427896

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that emerged in China at the end of 2019 and caused a large global outbreak. The interaction between SARS-CoV-2 and the immune response is complex because it is regulated by various processes taking part at the intracellular, tissue, and host levels. To gain a better understanding of the pathogenesis and progression of COVID-19, we formulate a multiscale model that integrate the main mechanisms which regulate the immune response to SARS-CoV-2 across multiple scales. The model describes the effect of type I interferon on the replication of SARS-CoV-2 inside cells. At the tissue level, we simulate the interactions between infected cells and immune cells using a hybrid agent-based representation. At the same time, we model the dynamics of virus spread and adaptive immune response in the host organism. After model validation, we demonstrate that a moderately weak inhibition of virus replication by type I IFN could elicit a strong adaptive immune response which accelerates the clearance of the virus. Furthermore, numerical simulations suggest that the deficiency of lymphocytes and not dendritic cells could lead to unfavourable outcomes in the elderly population.


Subject(s)
Coronavirus Infections , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427729

ABSTRACT

Multiple successful vaccines against SARS-CoV-2 are urgently needed to address the ongoing Covid-19 pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein co-administered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising of polybutadiene-b-polyethylene glycol and a cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells, which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of memory CD4+ and CD8+ T cells that produce Th1 cytokines. This study is an important step towards the development of an efficacious vaccine in humans.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.428007

ABSTRACT

The SARS-CoV-2 spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2 infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion, and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S cell-cell fusion. Additionally, we examine S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this highly sought-after therapeutic target.


Subject(s)
Severe Acute Respiratory Syndrome
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.22.21250320

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 5680 were "novel" SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.

SELECTION OF CITATIONS
SEARCH DETAIL